10 research outputs found

    Activity-dependent changes in synaptic efficacy at glutamatergic and GABAergic connections in the immature hippocampus

    Get PDF
    During development, correlated network activity plays a crucial role in establishing functional synaptic contacts, thus contributing to the development of adult neuronal circuits. In the hippocampus, a region of the brain involved in the formation of declarative memories, network-driven giant depolarizing potentials or GDPs are generated by the synergistic action of glutamate and GABA, which at this developmental stage is depolarizing and excitatory. The depolarizing action of GABA during GDPs results in calcium flux via NMDA receptors and voltage-dependent calcium channels. Calcium, in turn activates different signaling pathways necessary for several developmental processes including synaptogenesis. In previous work from our laboratory it was demonstrated that GDPs and associated calcium transients act as coincident detectors for enhancing synaptic efficacy at poorly developed mossy fibre-CA3 synapses in a Hebbian type of way..

    The database of quantitative cellular signaling: management and analysis of chemical kinetic models of signaling networks

    Get PDF
    Motivation: Analysis of cellular signaling interactions is expected to pose an enormous informatics challenge, perhaps even larger than analyzing the genome. The complex networks arising from signaling processes are traditionally represented as block diagrams. A key step in the evolution toward a more quantitative understanding of signaling is to explicitly specify the kinetics of all chemical reaction steps in a pathway. Technical advances in proteomics and high-throughput protein interaction assays promise a flood of such quantitative data. While annotations, molecular information and pathway connectivity have been compiled in several databases, and there are several proposals for general cell model description languages, there is currently little experience with databases of chemical kinetics and reaction level models of signaling networks. Results: The Database of Quantitative Cellular Signaling is a repository of models of signaling pathways. It is intended both to serve the growing field of chemical-reaction level simulation of signaling networks, and to anticipate issues in large-scale data management for signaling chemistry

    Control of GABA Release at Mossy Fiber-CA3 Connections in the Developing Hippocampus

    Get PDF
    In this review some of the recent work carried out in our laboratory concerning the functional role of GABAergic signalling at immature mossy fibres (MF)-CA3 principal cell synapses has been highlighted. While in adulthood MF, the axons of dentate gyrus granule cells release onto CA3 principal cells and interneurons glutamate, early in postnatal life they release GABA, which exerts into targeted cells a depolarizing and excitatory action. We found that GABAA-mediated postsynaptic currents (MF-GPSCs) exhibited a very low probability of release, were sensitive to L-AP4, a group III metabotropic glutamate receptor agonist, and revealed short-term frequency-dependent facilitation. Moreover, MF-GPSCs were down regulated by presynaptic GABAB and kainate receptors, activated by spillover of GABA from MF terminals and by glutamate present in the extracellular medium, respectively. Activation of these receptors contributed to the low release probability and in some cases to synapses silencing. By pairing calcium transients, associated with network-driven giant depolarizing potentials or GDPs (a hallmark of developmental networks thought to represent a primordial form of synchrony between neurons), generated by the synergistic action of glutamate and GABA with MF activation increased the probability of GABA release and caused the conversion of silent synapses into conductive ones suggesting that GDPs act as coincident detector signals for enhancing synaptic efficacy. Finally, to compare the relative strength of CA3 pyramidal cell output in relation to their MF glutamatergic or GABAergic inputs in adulthood or in postnatal development, respectively, a realistic model was constructed taking into account different biophysical properties of these synapses

    Inhibition of colony stimulating factor 1 receptor corrects maternal inflammation-induced microglial and synaptic dysfunction and behavioral abnormalities

    Get PDF
    Abstract Maternal immune activation (MIA) disrupts the central innate immune system during a critical neurodevelopmental period. Microglia are primary innate immune cells in the brain although their direct influence on the MIA phenotype is largely unknown. Here we show that MIA alters microglial gene expression with upregulation of cellular protrusion/neuritogenic pathways, concurrently causing repetitive behavior, social deficits, and synaptic dysfunction to layer V intrinsically bursting pyramidal neurons in the prefrontal cortex of mice. MIA increases plastic dendritic spines of the intrinsically bursting neurons and their interaction with hyper-ramified microglia. Treating MIA offspring by colony stimulating factor 1 receptor inhibitors induces depletion and repopulation of microglia, and corrects protein expression of the newly identified MIA-associated neuritogenic molecules in microglia, which coalesces with correction of MIA-associated synaptic, neurophysiological, and behavioral abnormalities. Our study demonstrates that maternal immune insults perturb microglial phenotypes and influence neuronal functions throughout adulthood, and reveals a potent effect of colony stimulating factor 1 receptor inhibitors on the correction of MIA-associated microglial, synaptic, and neurobehavioral dysfunctions

    A biological classification of Huntington's disease: the Integrated Staging System

    No full text
    The current research paradigm for Huntington's disease is based on participants with overt clinical phenotypes and does not address its pathophysiology nor the biomarker changes that can precede by decades the functional decline. We have generated a new research framework to standardise clinical research and enable interventional studies earlier in the disease course. The Huntington's Disease Integrated Staging System (HD-ISS) comprises a biological research definition and evidence-based staging centred on biological, clinical, and functional assessments. We used a formal consensus method that involved representatives from academia, industry, and non-profit organisations. The HD-ISS characterises individuals for research purposes from birth, starting at Stage 0 (ie, individuals with the Huntington's disease genetic mutation without any detectable pathological change) by using a genetic definition of Huntington's disease. Huntington's disease progression is then marked by measurable indicators of underlying pathophysiology (Stage 1), a detectable clinical phenotype (Stage 2), and then decline in function (Stage 3). Individuals can be precisely classified into stages based on thresholds of stage-specific landmark assessments. We also demonstrated the internal validity of this system. The adoption of the HD-ISS could facilitate the design of clinical trials targeting populations before clinical motor diagnosis and enable data standardisation across ongoing and future studies

    Drug-induced ocular side effects

    No full text
    corecore